Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit
نویسندگان
چکیده
Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.
منابع مشابه
Three-dimensional Kinematic Analysis of Shoulder through Wearable Inertial and Magnetic Sensors during Swimming Strokes Simulation
Wearable inertial and magnetic measurement units (IMMUs) have recently gained much attention in investigations approaching human kinematic analysis in sports scenario. Running, tennis, baseball, snowboarding, rowing, and swimming are some examples of sports already approached. In swimming, many studies proposed several methods to identify the temporal phases of a single swimming stroke or the s...
متن کاملObserving the State of Balance with a Single Upper-Body Sensor
The occurrence of falls is an urgent challenge in our aging society. For wearable devices that actively prevent falls or mitigate their consequences, a critical prerequisite is knowledge on the user’s current state of balance. To keep such wearable systems practical and to achieve high acceptance, only very limited sensor instrumentation is possible, often restricted to inertial measurement uni...
متن کاملMeasuring Kinematic Variables in Front Crawl Swimming Using Accelerometers: A Validation Study
Objective data on swimming performance is needed to meet the demands of the swimming coach and athlete. The purpose of this study is to use a multiple inertial measurement units to calculate Lap Time, Velocity, Stroke Count, Stroke Duration, Stroke Rate and Phases of the Stroke (Entry, Pull, Push, Recovery) in front crawl swimming. Using multiple units on the body, an algorithm was developed to...
متن کاملA Preliminary Test of Measurement of Joint Angles and Stride Length with Wireless Inertial Sensors for Wearable Gait Evaluation System
The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from th...
متن کاملToward Real-Time Automated Detection of Turns during Gait Using Wearable Inertial Measurement Units
Previous studies have presented algorithms for detection of turns during gait using wearable sensors, but those algorithms were not built for real-time use. This paper therefore investigates the optimal approach for real-time detection of planned turns during gait using wearable inertial measurement units. Several different sensor positions (head, back and legs) and three different detection cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012